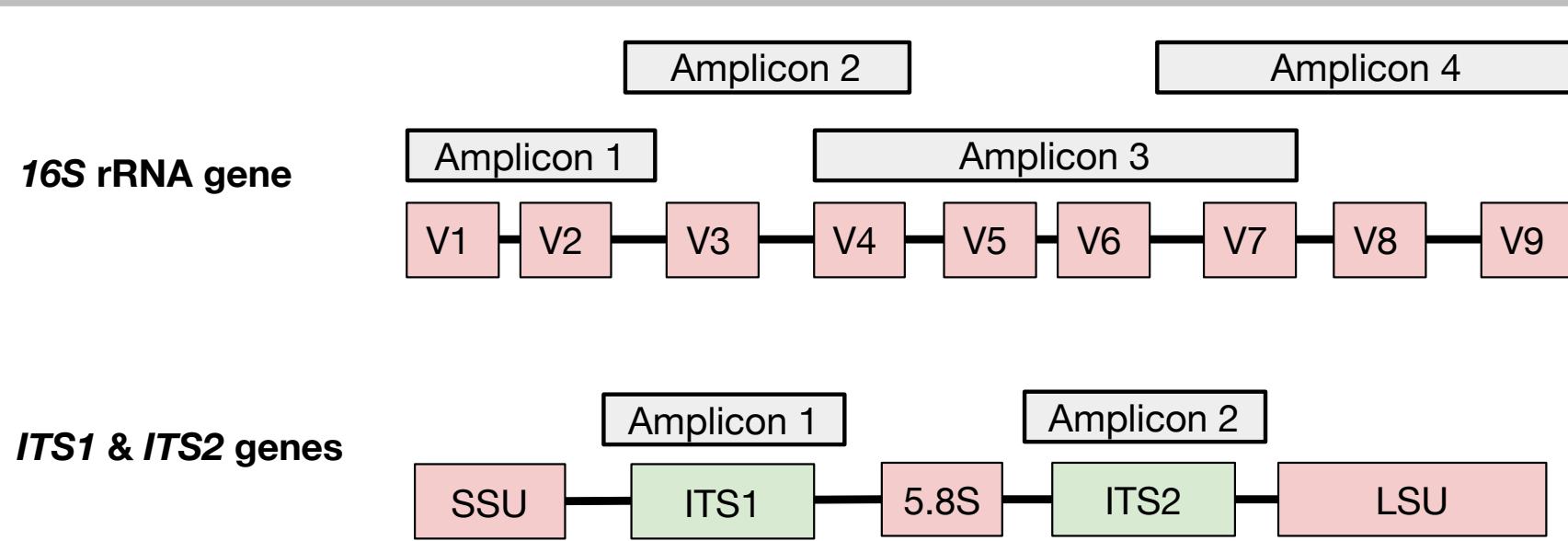


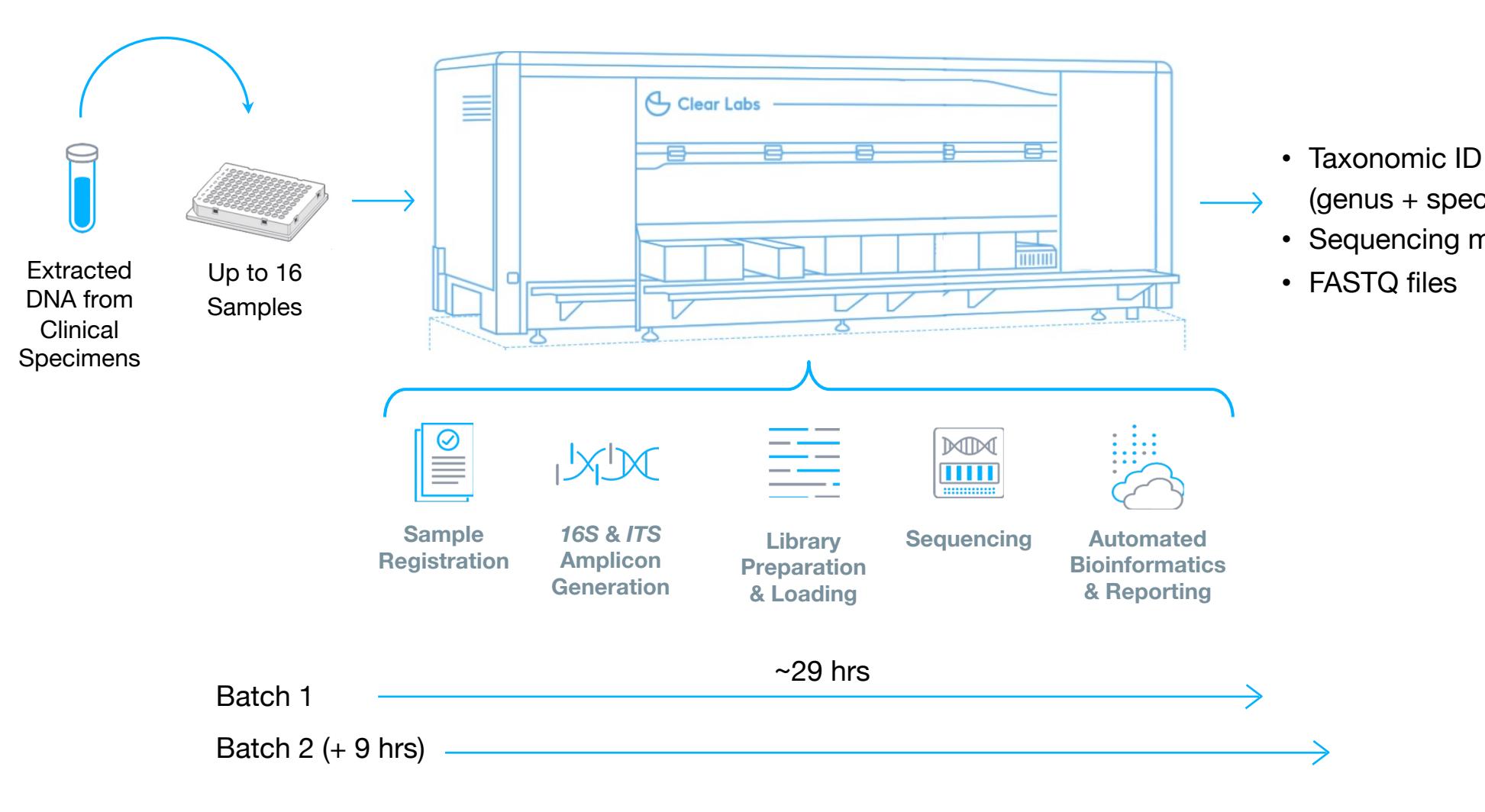
Validation of a fully automated 16S/ITS tNGS solution for agnostic detection of bacterial and fungal pathogens

Justin H.J. Ng, Andrew Lin, Sima Mortazavi, David Tran, Norma Ordaz-Yuan, Praneetha Avutala, Nestor Samiylenko, Alexander Jorjorian, Derreck Carter-House, Akshay Paropkari, Samuel Hoeffel, Andy Yung, Mark Deiparine, Cheng-Yuk Lee, Adam Allred, Shadi Shokralla, Kyle Rhoden and Ramin Khaksar

INTRODUCTION


- Agnostic detection of bacterial and fungal pathogens can be achieved via 16S rRNA and ITS gene targeted next generation sequencing (tNGS), respectively.
- Complex and laborious nature of next generation sequencing (NGS) workflows create significant barriers of entry for widespread laboratory adoption.
- Integrating tNGS workflows with automation will enable laboratorians to perform complex operations with minimal training and has been proven successful for application in the food safety and infectious diseases space^{1,2}.
- The Clear Dx™ fully automated, cloud-integrated NGS solution has revolutionized the way laboratories in public health departments and academic medical centers approach molecular pathogen detection and testing.
- Here, we evaluated the performance of a fully automated 16S/ITS tNGS solution across a variety of bacterial and fungal pathogens.

DESIGN & METHODS


The Clear Dx™ Automated Platform

The Clear Dx™ Microbial ID tNGS Assay Target

Overview of the Clear Dx™ Microbial ID tNGS Workflow

RESULTS

Analytical Performance with No Human Background

Organism	Concentration	# of Samples	# of Samples with Detection at the Genus Level
	1 x 10 ³ genome copies / 5 μL	10	10 (100%)
Bacteria	1 x 10 ² genome copies / 5 μL	37	35 (94.6%)
	1 x 10 ¹ genome copies / 5 μL	10	7 (70%)
	1 x 10 ³ genome copies / 5 μL	9	9 (100%)
Fungi	1 x 10 ² genome copies / 5 μL	9	9 (100%)
	1 x 10 ¹ genome copies / 5 μL	27	27 (100%)

Contrived Performance with Human Background

Organism	Concentration	# of Samples	# of Samples with Detection at the Genus Level
	1 x 10 ³ genome copies / 5 μL	66	61 (92.4%)
Bacteria	1 x 10 ² genome copies / 5 μL	69	62 (89.9%)
	1 x 10 ¹ genome copies / 5 μL	18	15 (83.3%)
	1 x 10 ³ genome copies / 5 μL	19	19 (100%)
Fungi	1 x 10 ² genome copies / 5 μL	16	16 (100%)
	1 x 10 ¹ genome copies / 5 μL	46	35 (76.1%)

Analytical LoD of the assay is 10³ genome copies / 5 μL for bacteria and 10² genome copies / 5 μL for fungi

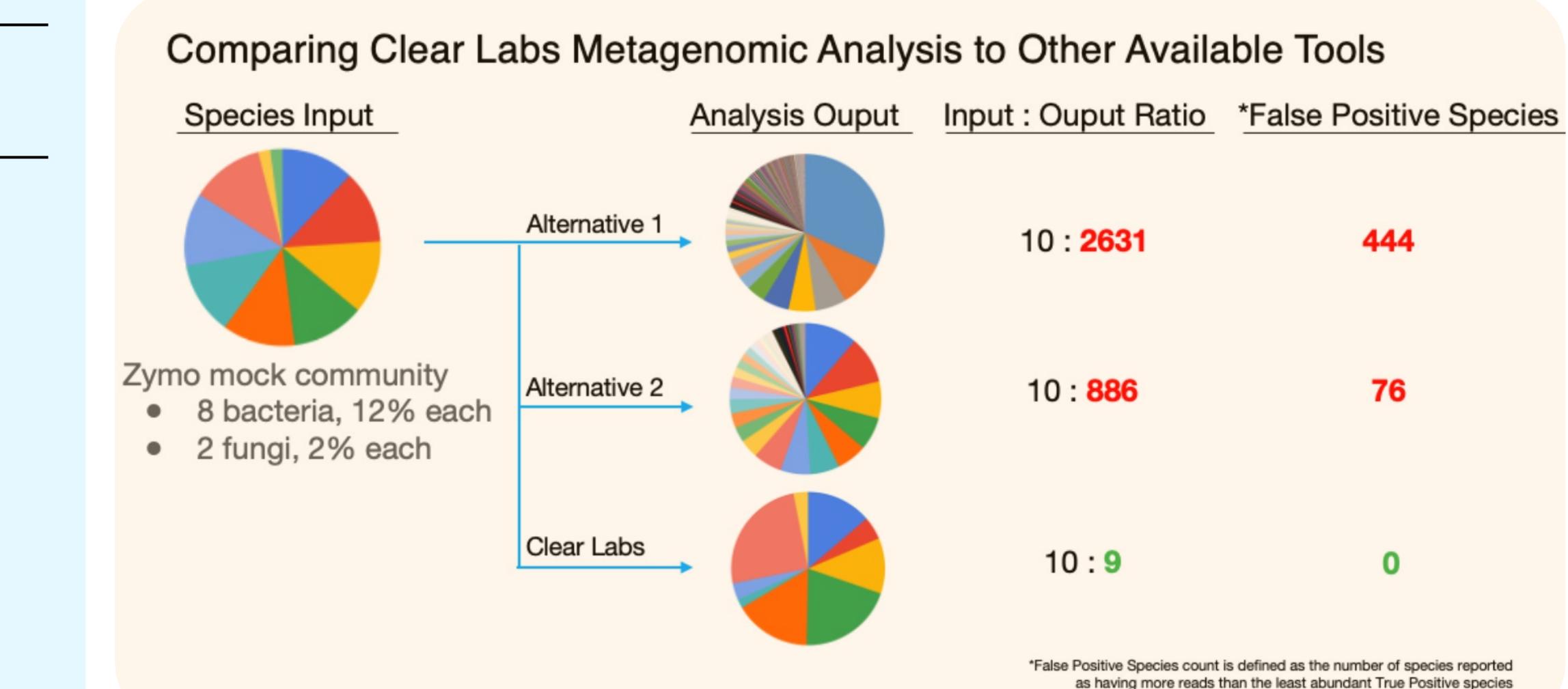
Positive Control and No Template Control Performance

Controls	Performance
Positive Control	12 / 12 Detected for both Bacterial & Fungal DNA
No Template Control	11 / 14* Not Detected for Bacterial or Fungal DNA

* Three NTCs returned low-level positive results for environmental organisms commonly associated with contamination (e.g., *Methylobacterium*, *Bradyrhizobium*, *Mesorhizobium* *terrae*, *Lawsonella* *clevlandi*, *Sphingomonas*). These results are presumed to be due to environmental contamination during sample handling or processing.

Bacteria and Fungi Validated to Date

Bacteria	Fungi
Acinetobacter	Escherichia
Bacillus	Francisella
Bacteroides	Klebsiella
Borrelia	Legionella
Brucella	Pseudomonas
Burkholderia	Listeria
Campylobacter	Micrococcus
Citrobacter	Moraxella
Clostridioides	Morganella
Clostridium	Mycobacterium
Corynebacterium	Mycobacteroides
Enterobacter	Mycobacterium
Enterococcus	Mycoplasmoides
	Mycoplasma
	Yersinia


Internal Validation Studies – Sequencing Run Results

Acceptance Criteria	% R1 ≥ Q30	% R2 ≥ Q30	% Occupancy	% PhiX Detected	Total Yield (Gb)
≥ 80.0%	≥ 80.0%	≥ 77.0%	≤ 1.80%	≥ 0.71	
Run 1	91.3	89.2	90.5	1.04	1.7
Run 2	89.2	87.3	84.5	1.42	1.58
Run 3	89.1	87.1	85.9	1.70	1.61
Run 4	87.5	85.1	84.1	1.25	1.45
Run 5	91.1	90.1	88.6	0.80	1.64
Run 6	91.1	88.8	95.5	0.55	1.64
Run 7	88.4	86.3	90.9	1.21	1.6
Run 8	87.9	86.7	96.4	0.36	1.53
Run 9	88.7	86.1	89.3	1.16	1.54
Run 10	89.7	88.0	91.0	0.73	1.6
Run 11	88.9	86.0	89.5	0.89	1.54
Run 12	89.5	86.7	83.0	0.69	1.51

Internal Validation Studies – Sample Level Results

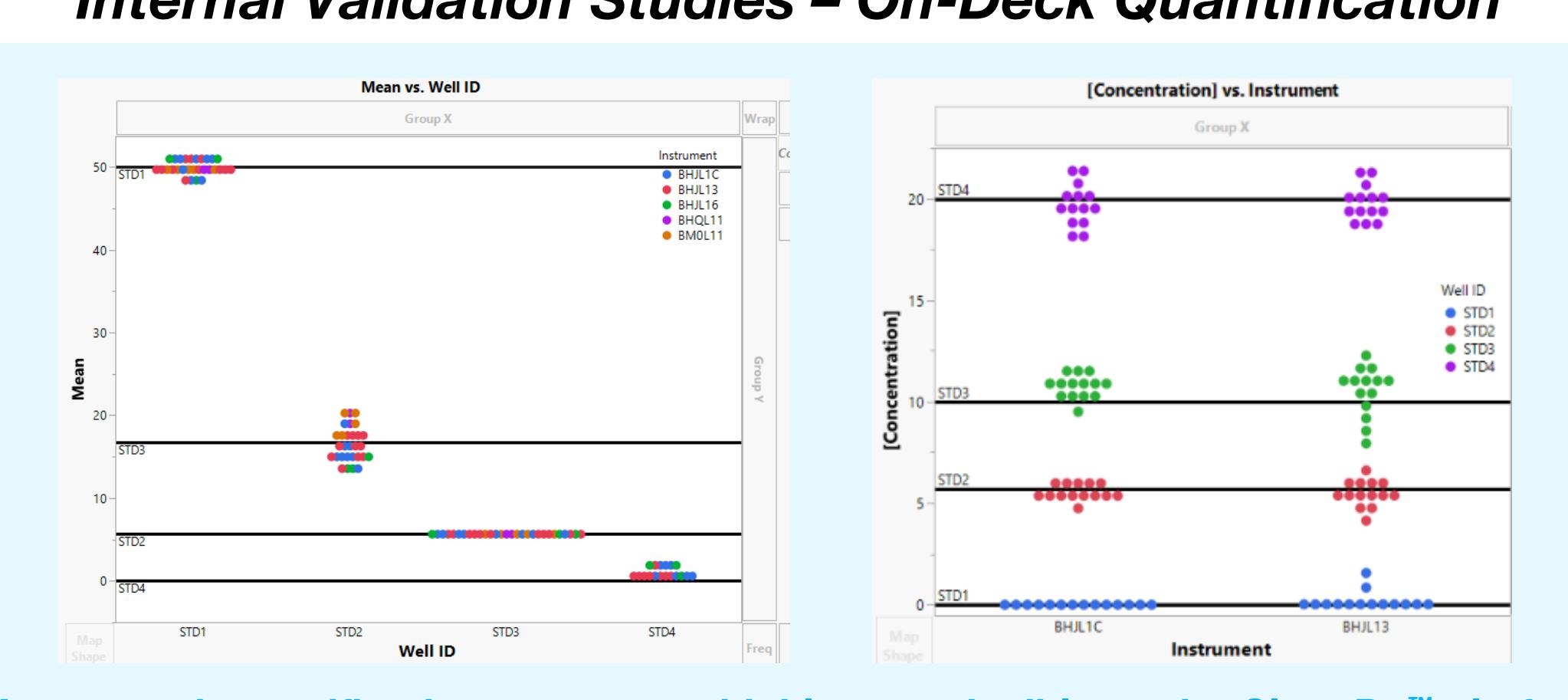
Study	Metric	Sample Acceptance criteria	Overall Sample Level Performance
Analytical LoD for Bacteria	Single infection detection rate to at least the genus level	≥70% of samples with no background at ≥10 ³ cp/uL should be detected	93.0% (25/27 samples detected)
Analytical LoD for Fungi	Single infection detection rate to at least the genus level	≥45% of samples with no background at ≥10 ³ cp/uL should be detected	100% (18/18 samples detected)
Contrived Bacterial Sample Performance	Single infection detection rate to at least the genus level	≥75% of samples in 20ng/uL blood at ≥10 ² cp/uL should be detected	83.0% (40/48 samples detected)
Contrived Fungal Sample Performance	Single infection detection rate to at least the genus level	≥75% of samples in 20ng/uL blood at ≥10 ¹ cp/uL should be detected	77.8% (11/27 samples detected)
NTC (No Background)	Not Detected	≥60% of NTCs with no background should be called Not Detected for both Bacteria AND Fungi	78.5% (11/14 samples not detected)
Contrived Co-infection Sample Performance	≥3 pathogens detected in co-infection samples to at least the genus level	≥40% of co-infection samples should detect at least 3 organisms	77.7% (14/18 co-infection samples detected)

Validation of Clear Labs' Bioinformatics Analytical Pipeline

Time and Motion Study

Clear Dx™	Manual tNGS
Time to results	~29 Hrs
Approximate hands-on time	~30 Mins
Human touchpoints	1 >20

* Internal or send-out testing, including specimen shipping


CONCLUSION

- The Clear Dx™ Microbial Micro ID tNGS is a fully automated, end-to-end solution for agnostic bacterial and fungal detection in a single assay from clinical specimens.
- Ability to detect down to 10³ genome copies/5 μL for bacteria and 10² genome copies/5 μL for fungi in the presence of host DNA background
- Robust and easy-to-use application with integrated bioinformatics analysis for cleaner, more actionable results.
- Empower laboratories to effectively detect bacterial and fungal pathogens in-house with minimal technical expertise and hands-on time.

Come chat with us at **Booth #811!**

Check out **Poster ID057** for the performance of this assay on FFPE specimens in collaboration with Dr. Rebecca Yee from GWU!

Internal Validation Studies – On-Deck Quantification

Automated quantification steps were highly reproducible on the Clear Dx™ platform

Disclaimer:

The Clear Dx™ instrument is for **Research Use Only (RUO)** and is not intended for diagnostic purposes.