

Comparison of Clear Safety *Listeria*

with Conventional Methodologies for *Listeria* Detection and Speciation

APRIL 18, 2022

Introduction

Out of 47.8 million domestically acquired foodborne illnesses in the United States, Listeria monocytogenes is responsible for an estimated 1,600 illnesses and with a case mortality rate of 20%, about 260 deaths per year (1). L. monocytogenes is an opportunistic human foodborne pathogen that causes listeriosis in the elderly, newborn babies, unborn fetuses, immunocompromised hosts and patients suffering from viral or parasitic diseases or malignancies (2). L. monocytogenes is found in soil, water, and sewage as a saprophyte, and in the intestines of cattle and sheep. Listeria species also form biofilms that can persist in food-processing plants and contaminate food products (3). It has been reported that the presence of non-pathogenic Listeria species is considered an indicator for the L. monocytogenes species (4) and Listeria species detection should be included in robust environmental monitoring programs. Therefore, accurate identification of L. monocytogenes and Listeria species is important in mitigating foodborne outbreaks and for verifying the effectiveness of a pathogen control program.

The Clear Safety Listeria method uses automated, real-time next-generation sequencing (NGS) technology that combines DNA extraction and nucleic acid amplification with rapid sequencing. Automation reduces user error, increases repeatability and robustness, and reduces handson time to 0.5-1 hr, allowing technicians to perform other tasks. The Clear Safety Listeria method is designed for Listeria spp. detection, identification of Listeria species and Similarity Analysis® of Listeria strains for tracking Listeria in food and environmental samples (5). Clear Safety Listeria offers advanced high-throughput DNA sequencing technology enabling the generation of millions of sequences to simultaneously detect multiple genetic markers, allowing for Listeria detection, species identification and Similarity Analysis® in a single assay. The built-in redundancy that comes with detecting multiple gene targets improves accuracy and substantially reduces the chances of false negative and false positive results.

Clear Safety *Listeria* also has the ability to differentiate between live and dead target cells, which can mitigate false positives due to dead-cell DNA amplification in PCR/LAMP based methods. Real-time *Listeria* detection, speciation, and specifically Similarity Analysis[®] can more reliably track sources of contamination and the spread of *Listeria* through facilities, to assist customers in developing and implementing data-driven *Listeria* species mitigation strategies and amendments in Good Manufacturing Practices. The Clear Safety *Listeria* assay offers high confidence detection from primary enrichment including detection, speciation and Similarity Analysis[™] without the need for colony isolation.

Design

This study was performed by an independent service laboratory, which compared the performance of Clear Safety *Listeria* with a commercial qPCR method and two enzyme-linked immunosorbent assays (ELISA) methods for detection of *Listeria species*. The identification of each sample was confirmed by the gold standard culture methods described in FDA BAM Chapter 10: Listeria section G (<u>6</u>) along with a commercial biochemical assay kit.

Bacterial culture isolates (see Table 1) were inoculated into the 10 mL brain heart infusion broth and incubated at 35°C for 24h. All cultures were ten-fold diluted in tryptic soy broth supplemented with 0.6% yeast extract (TSBYE) and appropriate dilutions were plated on BHI agar for enumeration. Two separate mixtures of non-Listeria exclusive organisms described in Table 1 were prepared by mixing equal volumes of three exclusive cultures at the concentration of 1E+07 CFU/mL are identified as cocktail #1 and cocktail #2. All Listeria cultures were adjusted to 2E+07 CFU/mL concentration and mixed with either TSBYE, cocktail #1, or cocktail #2 in 1:1 ratio. Samples and controls are described in Table 2. Figure 1 shows the paired study design used in this study. Aliquots of each sample were analyzed by Clear Safety Listeria, real-time PCR and two different ELISA systems following manufacturer's instructions.

Category Organism		Source	Mixture of exclusives		
	L. grayi	ATCC 25401			
	L. innocua	ATCC 51742			
	L. ivanovii	ATCC 49953			
<i>Listeria</i> inclusives	L. marthii	ATCC BAA-1595	Not applicable		
	L. monocytogenes	ATCC 35152			
	L. seeligeri	ATCC 35967			
	L. welshimeri	ATCC 35897			
	Bacillus licheniformis	ATCC 14580			
Non- <i>Listeria</i> exclusives	Serratia marcescens	ATCC 13880	Cocktail #1		
	Enterococcus faecalis	ATCC 33186			
	Citrobacter freundii	ATCC 43864			
	Bacillus cereus	ATCC 130601	Cocktail #2		
	Staphylococcus aureus	ATCC 33591			

Table 1: List of organisms used in this study

Figure 1: Paired study design

Table 2: Test samples

Sample ID	<i>Listeria</i> Inclusive Organism	Exclusivity Organism Mixture
1	L. grayi	N/A - Sterile TSBYE
2	L. innocua	N/A - Sterile TSBYE
3	L. ivanovii	N/A - Sterile TSBYE
4	L. marthii	N/A - Sterile TSBYE
5	L. monocytogenes	N/A - Sterile TSBYE
6	L. seeligeri	N/A - Sterile TSBYE
7	L. welshimeri	N/A - Sterile TSBYE
8	L. grayi	Cocktail #1
9	L. innocua	Cocktail #1
10	L. ivanovii	Cocktail #1
11	L. marthii	Cocktail #1
12	L. monocytogenes	Cocktail #1
13	L. seeligeri	Cocktail #1
14	L. welshimeri	Cocktail #1
15	L. grayi	Cocktail #2
16	L. innocua	Cocktail #2
17	L. ivanovii	Cocktail #2
18	L. marthii	Cocktail #2
19	L. monocytogenes	Cocktail #2
20	L. seeligeri	Cocktail #2
21	L. welshimeri	Cocktail #2
22	Sterile TSBYE	N/A - Sterile TSBYE
23	Sterile TSBYE	Cocktail #1
24	Sterile TSBYE	Cocktail #2

Results and Discussion

A total of four Listeria detection methods were used in this study, Clear Safety Listeria, a gPCR assay, ELISA-1 and ELISA-2. A panel of 7 inclusive Listeria species were tested individually along with a mixture competitor organisms (cocktail #1 or cocktail #2). Clear Safety Listeria resulted in 100% accuracy in Listeria detection with no false negative or false positive results. The qPCR assay also had 100% detection accuracy, but did not provide species information. ELISA-1 detected Listeria in 15 samples out of 21 inoculated samples resulting in a total of 6 false-negatives. ELISA-2 detected Listeria in 16 samples out of 21 inoculated samples resulting in a total of 5 false-negatives. Data obtained from this study is presented in Table 3.

In addition to 100% detection accuracy, Clear Safety Listeria provided 100% accuracy in species identification, while the commercial biochemical assay kit failed to confirm the identity of Listeria marthii and only identified Listeria grayi in two out of three samples. Additional fermentation broths were needed to confirm the species identification of L. marthii and L. gravi in those samples.

Table 3: Comparison of Clear Safety Listeria, qPCR, two ELISA Assays and culture confirmation method for Listeria species

Sample ID	Inclusive organism	Exclusives Cocktail	Culture Confirmation	Clear Safety Listeria Screening	Clear Safety Listeria	qPCR	ELISA-1	ELISA-2
1	L. grayi	TSBYE	L. grayi	Positive	L. grayi	Presumptive	Presumptive	Presumptive
2	L. innocua	TSBYE	L. innocua	Positive	L. innocua	Presumptive	Presumptive	Presumptive
3	L. ivanovii	TSBYE	L. ivanovii	Positive	L. ivanovii	Presumptive	Negative	Presumptive
4	L. marthii	TSBYE	Listeria spp.	Positive	L. marthii	Presumptive	Presumptive	Presumptive
5	L. monocytogenes	TSBYE	L. monocytogenes	Positive	L. monocytogenes	Presumptive	Presumptive	Presumptive
6	L. seeligeri	TSBYE	L. seeligeri	Positive	L. seeligeri	Presumptive	Negative	Negative
7	L. welshimeri	TSBYE	L. welshimeri	Positive	L. welshimeri	Presumptive	Presumptive	Presumptive
8	L. grayi	Cocktail #1	L. grayi	Positive	L. grayi	Presumptive	Presumptive	Presumptive
9	L. innocua	Cocktail #1	L. innocua	Positive	L. innocua	Presumptive	Presumptive	Presumptive
10	L. ivanovii	Cocktail #1	L. ivanovii	Positive	L. ivanovii	Presumptive	Negative	Negative
11	L. marthii	Cocktail #1	Listeria spp.	Positive	L. marthii	Presumptive	Presumptive	Presumptive
12	L. monocytogenes	Cocktail #1	L. monocytogenes	Positive	L. monocytogenes	Presumptive	Presumptive	Presumptive
13	L. seeligeri	Cocktail #1	L. seeligeri	Positive	L. seeligeri	Presumptive	Negative	Negative
14	L. welshimeri	Cocktail #1	L. welshimeri	Positive	L. welshimeri	Presumptive	Presumptive	Presumptive
15	L. grayi	Cocktail #2	Listeria spp.	Positive	L. grayi	Presumptive	Presumptive	Presumptive
16	L. innocua	Cocktail #2	L. innocua	Positive	L. innocua	Presumptive	Presumptive	Presumptive
17	L. ivanovii	Cocktail #2	L. ivanovii	Positive	L. ivanovii	Presumptive	Negative	Negative
18	L. marthii	Cocktail #2	Listeria spp.	Positive	L. marthii	Presumptive	Presumptive	Presumptive
19	L. monocytogenes	Cocktail #2	L. monocytogenes	Positive	L. monocytogenes	Presumptive	Presumptive	Presumptive
20	L. seeligeri	Cocktail #2	L. seeligeri	Positive	L. seeligeri	Presumptive	Negative	Negative
21	L. welshimeri	Cocktail #2	L. welshimeri	Positive	L. welshimeri	Presumptive	Presumptive	Presumptive
22	Sterile TSBYE	TSBYE	Negative	Negative	Negative	Negative	Negative	Negative
23	Sterile TSBYE	Cocktail #1	Negative	Negative	Negative	Negative	Negative	Negative
24	Sterile TSBYE	Cocktail #2	Negative	Negative	Negative	Negative	Negative	Negative
Time to results (in hours)		120h	2h sample prep/12h run time		2h sample prep/1.5h run time*	1h sample prep/1.5h run time*	1h sample prep/1.5h run time*	

= Positive and species ID

= Positive Listeria spp. = *Listeria* not detected

* indicates time to presumptive results.

While the rapid qPCR and immunoassays could provide results in 2-4 hours, positive results are only considered presumptive since culture confirmation would be required for speciation. This would require an additional 5-7 days whereas the Clear Safety *Listeria* assay can provide confirmed results in less than 24 hours.

Conclusion

In this study, Clear Safety *Listeria* and qPCR achieved 100% accuracy in detection while ELISA-1 (28.6% false negative rate) and ELISA-2 (23.8% false negative rate) failed to detect *Listeria* in some samples. False negative results are a severe risk to companies and public health as they can lead to the consumption of hazardous foods, thus assays for food safety testing should be carefully selected to minimize risk of false negatives. While qPCR provides rapid and accurate analyses, these results are considered presumptive and require an additional 5-7 days of culture confirmation analysis to provide actionable results with confirmed positive *Listeria* and species identification.

Comparatively, Clear Safety *Listeria* is an automated sequencing system that is able to accurately detect *Listeria* and confirm species identification 10 times faster, in a total of 10-12 hours, with an automated system that requires only 0.5-1 hours of hands-on time. Additionally, the Similarity Analysis[®] strain typing capabilities of the Clear Safety *Listeria* assay can match strains within a facility to aid in environmental monitoring and root cause analysis investigations. Thus, the findings of this study

support the claim that the Clear Safety *Listeria* assay presents a valuable, affordable, and high throughput automated solution that can improve identification of hazardous food products and environmental monitoring to ensure the safety of the food supply.

References

- 1 CDC (2018). "Estimates of foodborne illness in the United States." https://www.cdc.gov/foodborneburden/ index.html. Accessed February 9, 2022
- 2 Swaminathan, B., and Gerner-Smidt, P. (2007). "The epidemiology of human listeriosis." *Microbes and Infection* 9(10): 1236–1243. doi: 10.1016/ j.micinf.2007.05.011
- 3 Ferreira, V., Wiedmann, M., Teixeira, P., and Stasiewicz, M.J. (2014). "Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health." *Journal of Food Protection* 77: 150–170. doi: 10.4315/0362-028X.JFP-13-150
- 4 Halkman, H.B.D. and Halkman, A.K. (2014). "Indicator organisms," In *Encyclopedia of Food Microbiology, 2nd edition*. https://www.sciencedirect.com/science/article/ pii/B9780123847300003967
- 5 Pollard, S., Singh, A.K., Lin, A., et al. (2022). "Validation of the Clear Safety Listeria method for detection of Listeria species in hot dogs and on environmental surface Matrixes: AOAC Performance Tested Method SM 091901. *Journal of AOAC International* 105(1): 211–229
- 6 U.S. Food and Drug Administration. (2017). "BAM Chapter 10: Detection of Listeria monocytogenes in Foods and Environmental Samples, and Enumeration of Listeria monocytogenes in Foods." https://www. fda.gov/food/laboratory-methods-food/bam-chapter-10-detection-listeria-monocytogenes-foods-andenvironmental-samples-and-enumeration

To learn more, contact: (650) 257-3304 | inquiries@clearlabs.com

clearlabs.com

Clear Labs © 2022

Clear Labs